Parallel Factor Analysis
Usage
parafac(
Tensor,
nfac,
nstart = 1,
maxit = 500,
max_fn = 10000,
ctol = 1e-04,
rel_tol = 1e-08,
abs_tol = 1e-08,
grad_tol = 1e-08,
initialization = "random",
method = "als",
verbose = FALSE,
output = "best",
sortComponents = FALSE
)
Arguments
- Tensor
3-way matrix of numeric data
- nfac
Number of factors (components) to fit.
- nstart
Number of models to randomly initialize (default 1).
- maxit
Maximum number of iterations allowed without convergence in the ALS case (default 500).
- max_fn
Maximum number of function evaluations allowed without convergence in the OPT case (default 10000).
- ctol
Relative change in loss tolerated to call the algorithm converged in the ALS case (default 1e-4).
- rel_tol
Relative change in loss tolerated to call the algorithm converged in the OPT case (default 1e-8).
- abs_tol
Absolute loss tolerated to call the algorithm converged in the OPT case (default 1e-8).
- grad_tol
Tolerance on the two-norm of the gradient divided over the number of elements in the gradient in the OPT case (default 1e-8).
- initialization
"Random" for randomly initialized input vectors or "nvec" for svd-based best guess.
- method
Use ALS algorithm ("als", default) or use all-at-once optimization ("opt"). The all-at-once optimization is based on a nonlinear conjugate gradient method with Hestenes-Stiefel updates and the More-Thuente line search algorithm.
- verbose
- output
String ("best"/"all") Return only the best model of the nstart models ("best") or return all of them in a list object ("all").
- sortComponents
Boolean to sort the components based on their variance explained (default FALSE)