Import MicrobiotaProcess object for PARAFAC modelling
Source:R/importMicrobiotaProcess.R
importMicrobiotaProcess.Rd
Import MicrobiotaProcess object for PARAFAC modelling
Arguments
- MPobject
MicrobiotaProcess object containing at least an OTU table and sample information, preferably also taxonomic information.
- subjectIDs
Column name in the sample information corresponding to the subject IDs.
- thirdMode
Column name in the sample information corresponding to the study design aspect to put in the third mode of the data cube.
- taxa_are_rows
Boolean specifying if the taxa are in the rows of the OTU table (TRUE) or not (FALSE).
Value
List object containing:
'data': data cube
'mode1': metadata of the subject mode
'mode2': taxonomy information
'mode3': metadata of the third mode
Examples
# \donttest{
library(MicrobiotaProcess)
#> MicrobiotaProcess v1.16.1 For help:
#> https://github.com/YuLab-SMU/MicrobiotaProcess/issues
#>
#> If you use MicrobiotaProcess in published research, please cite the
#> paper:
#>
#> Shuangbin Xu, Li Zhan, Wenli Tang, Qianwen Wang, Zehan Dai, Lang Zhou,
#> Tingze Feng, Meijun Chen, Tianzhi Wu, Erqiang Hu, Guangchuang Yu.
#> MicrobiotaProcess: A comprehensive R package for deep mining
#> microbiome. The Innovation. 2023, 4(2):100388. doi:
#> 10.1016/j.xinn.2023.100388
#>
#> Export the citation to BibTex by citation('MicrobiotaProcess')
#>
#> This message can be suppressed by:
#> suppressPackageStartupMessages(library(MicrobiotaProcess))
#>
#> Attaching package: ‘MicrobiotaProcess’
#> The following object is masked from ‘package:stats’:
#>
#> filter
# Generate synthetic data
sample_info = data.frame(Sample = factor(c("S1", "S2", "S3", "S4", "S5")),
time = factor(c("T1", "T2", "T1", "T2", "T1")))
otu_table = matrix(runif(25, min = 0, max = 100), nrow = 5, ncol = 5,
dimnames = list(paste0("OTU", 1:5), sample_info$Sample))
taxonomy_table = data.frame(OTU = paste0("OTU", 1:5),
Kingdom = rep("King", 5),
Phylum = rep("Phy", 5),
Class = rep("Cla", 5),
Order = rep("Ord", 5),
Family = rep("Fam", 5),
Genus = rep("Gen", 5))
# Create Summarized Experiment
synthetic_SE = SummarizedExperiment::SummarizedExperiment(
assays = list(otu = otu_table),
colData = sample_info,
rowData = taxonomy_table)
# Convert to MicrobiotaProcess object
synthetic_MPSE = as.MPSE(synthetic_SE)
dataset = importMicrobiotaProcess(synthetic_MPSE,
subjectIDs = "Sample",
thirdMode = "time",
taxa_are_rows = TRUE)
# }