Create randomly initialized models to determine the correct number of components by assessing model quality metrics.
Source:R/assessModelQuality.R
assessModelQuality.Rd
Create randomly initialized models to determine the correct number of components by assessing model quality metrics.
Usage
assessModelQuality(
X,
minNumComponents = 1,
maxNumComponents = 5,
numRepetitions = 100,
method = "als",
ctol = 1e-06,
maxit = 2500,
max_fn = 10000,
rel_tol = 1e-08,
abs_tol = 1e-08,
grad_tol = 1e-08,
numCores = 1
)
Arguments
- X
Input data
- minNumComponents
Minimum number of components (default 1).
- maxNumComponents
Maximum number of components (default 5).
- numRepetitions
Number of randomly initialized models to create (default 100).
- method
Use ALS algorithm ("als", default) or use all-at-once optimization ("opt"). The all-at-once optimization is based on a nonlinear conjugate gradient method with Hestenes-Stiefel updates and the More-Thuente line search algorithm.
- ctol
Change in SSQ needed for model to be converged (default 1e-6).
- maxit
Maximum number of iterations (default 2500).
- max_fn
Maximum number of function evaluations allowed without convergence in the OPT case (default 10000).
- rel_tol
Relative change in loss tolerated to call the algorithm converged in the OPT case (default 1e-8).
- abs_tol
Absolute loss tolerated to call the algorithm converged in the OPT case (default 1e-8).
- grad_tol
Tolerance on the two-norm of the gradient divided over the number of elements in the gradient in the OPT case (default 1e-8).
- numCores
Number of cores to use. If set larger than 1, it will run the job in parallel (default 1)